

Preparation and properties of novel tungstate SrLa₆W₁₀O₄₀: Eu³⁺ phosphors

Guo Feng^{1,*}, Xiaolong Huang¹, Feng Jiang¹, Qing Yang¹, Wenwei Jin¹, Chuan Shao², Jianmin Liu¹, Wang Dahai³, Liang Jian¹

¹Department of Material Science and Engineering, Jingdezhen Ceramic Institute, Jingdezhen 333000, China ²Market Supervision and Management of Jingdezhen City Comprehensive Inspection and Testing Center, Jingdezhen 333000, China

³Jingdezhen Red Leaf Ceramics Co. Ltd, Jingdezhen 333000, China

Received 4 November 2023; Received in revised form 7 March 2024; Accepted 22 March 2024

Abstract

Novel tungstate $SrLa_{6-x}W_{10}O_{40}$: xEu^{3+} (x = 0, 0.03, 0.06, 0.09, 0.12, 0.15, 0.18, 0.21) red phosphors were prepared by solid state method at 1150 °C by using $SrCO_3$, La_2O_3 , WO_3 and Eu_2O_3 as raw materials. The powders were agglomerated with particles having mostly spheroidal morphology, mean particle size $D_{50} = 12.8 \,\mu$ m and narrow particle size distribution. With the increase of doping amount x, there is no significant difference in the diffraction peak position of the phosphor, but the cell volume of $SrLa_6W_{10}O_{40}$ slowly decreases. The relative strength of diffraction peaks decreases gradually and the half-peak width widens gradually, indicating that the inclusion of Eu^{3+} ions affects the crystallization of the $SrLa_6W_{10}O_{40}$ matrix. Excitation and emission spectra of the prepared samples were obtained. The optimal doping content has the $SrLa_{5.85}W_{10}O_4$: $0.15Eu^{3+}$ phosphor and is characterised with the colour coordinate of (0.652, 0.348), which is closer to the red standard colour (0.67, 0.33) than the near-ultraviolet red phosphor Y_2O_2S : Eu^{3+} (0.622, 0.351) used for commercial LED.

Keywords: Eu-doped $SrLa_6W_{10}O_{40}$, phosphor, powder, structure, luminescence properties

I. Introduction

Tungstate is one of the most classic inorganic luminescent materials. As early as 1896, Pupin discovered that CaWO₄ could be applied for X-ray luminescence, and it was first used as an X-ray luminescence material in 1906 [1]. In recent years, the application of tungstate activated by rare earth ion Eu³⁺ in white LED is also significant [2–4]. However, there are no reports on the preparation of phosphors with rare earth ion doping or transition metal ion doping of SrLa₆W₁₀O₄. Therefore, SrLa₆W₁₀O₄₀: Eu³⁺ phosphor was studied in this paper.

LED is a solid-state light source that has the characteristics of long lifespan, low energy consumption, energy conservation and low-carbon, no ultraviolet radiation and no mercury pollution. At present, it has been widely used in various fields such as indicator lights, displays, lighting, communication, etc. [5–7]. LED is a new and important light source in the 21st century. Among them phosphor conversion (PC) white LED has received much attention. At present, the main problems with white light LEDs are: i) too high costs, especially the cost of high brightness LEDs [8], ii) very low luminous efficiency of LED [9] and iii) lack of highperformance fluorescent powders. Su et al. [10] pointed out that the most prominent problem with the white LED scheme combining InGaN blue chip with YAG: Ce yellow fluorescent powder is that the white LED colour rendering index is only 60-70, and it is difficult to exceed 75. Generally, indoor lighting requires a colour rendering index of the light source greater than 80, and the white light scheme combining blue LED and yellow powder mentioned above cannot be achieved separately. The main reason for this result is that the proportion of red light in YAG: Ce fluorescent powder and the intensity are low. In YAG: Ce fluorescent powder, the red light spectral energy only accounts for 8% to 15% of the total spectral energy, which is much lower than

^{*}Corresponding author: tel: +86 798 8499328 e-mail: *fengguo@jci.edu.cn*

the proportion of yellow green light. Therefore, in order to improve the colour rendering index of packaged LED light sources and obtain products with appropriate colour temperature, a certain amount of red fluorescent powder must be added to YAG: Ce fluorescent powder during packaging. Currently, almost all low colour temperature white LED products on the market are manufactured using this method. However, efficient red fluorescent powder has become a bottleneck in the development of white LED [11], and currently, in the scheme of adding RGB fluorescent powder to ultraviolet chips, the efficiency of red, green and blue fluorescent powders has been greatly improved, but the efficiency of red fluorescent powder is the lowest [12]. The development of new red fluorescent powders is a key issue in achieving highperformance light conversion white LED [12,13], which also makes the development of high-efficiency red fluorescent powders for LED a current research hotspot.

The reported fluorescent powder preparation methods include: solid state method [14-16], sol-gel method [17-19], precipitation method [20,21], spray drying method [22,23], ultrasonic spray pyrolysis method [24,25], hydrothermal method [26,27], etc. The wet chemical method used to prepare fluorescent powder might have relatively good powder morphology, and the relative brightness may be similar to that of samples prepared by high-temperature solid state method. In some systems, the relative brightness can even be comparable to that of samples prepared by high-temperature solid state method (in general, the relative brightness of fluorescent powder prepared by wet chemical method is only 70% to 80% of that prepared by high-temperature solid state method. However, the above methods have the drawbacks of low production or high equipment requirements, which are not conducive to the practical application of fluorescent powders with important practical significance. In addition, wet chemical methods inevitably result in loss of raw materials during the preparation process, leading to significant errors in experimental reproducibility. Therefore, in this article we adopted the solid state method to prepare samples.

II. Experimental

The starting materials SrCO₃ (Shanghai Aladdin Co. Ltd.), La₂O₃ (Shanghai Aladdin Co. Ltd.), WO₃ (Sinopharm Chemical Reagent Co. Ltd.) and Eu₂O₃ (Sinopharm Chemical Reagent Co. Ltd.) were weighted according to the nominal compositions SrLa_{6-x}W₁₀O₄₀: xEu^{3+} (x = 0, 0.03, 0.06, 0.09, 0.12, 0.15, 0.18, 0.21). Then they were blended in agate mortar and calcined in an alumina crucible at 1150 °C for 2 h in air to complete conventional solid state reactions.

Phase composition of the SrLa₆W₁₀O₄₀: Eu³⁺ phosphors was identified by recording the powder X-ray diffraction (XRD) patterns using X'pert PRO X-ray diffractometer with Cu K α_1 radiation ($\lambda = 1.54056$ Å). Microstructure of the samples was observed by fieldemission scanning electron microscopy (FE-SEM, SU- 8010, JEOL, Japan). The particle size and distribution of the powders were characterized by laser particle size analyser (Mastersizer 3000, Malvern, UK). Excitation and emission spectra were measured by using Hitachi F-4500 spectrofluorometer equipped with a 60 W Xenon lamp as excitation source. The chromaticity data were taken by using the PMS-50 spectra analysis system. All of the measurements were performed at room temperature.

III. Results and discussion

3.1. Phase composition

Figure 1 shows XRD patterns of the prepared powders with the nominal compositions $SrLa_{6-x}W_{10}O_{40}$: xEu^{3+} where x = 0, 0.03, 0.06, 0.09, 0.12, 0.15, 0.18 and 0.21. It can be seen from Fig. 1 that the diffraction peaks of all samples containing Eu^{3+} are identical to those of the $SrLa_6W_{10}O_{40}$ (PDF card No. 29-1463) in the range of $10^\circ \le 2\theta \le 60^\circ$. No secondary phase diffraction peaks were detected. It is worth noting that the relative intensity of the XRD peaks becomes lower and the half-peak width gradually becomes wider with the increase of Eu^{3+} ions doping under the same preparation and testing conditions. The results indicated that the incorporation of Eu^{3+} ions hindered the crystallization of $SrLa_6W_{10}O_{40}$.

Figure 1. XRD patterns of SrLa_{6-x}W₁₀O₄₀: xEu³⁺

In order to facilitate clear comparison, XRD patterns of the SrLa₆W₁₀O₄₀ and SrLa_{5.85}W₁₀O₄₀: $0.15Eu^{3+}$ samples are shown in Fig. 2. The XRD patterns of both phosphor samples are similar to that of the SrLa₆W₁₀O₄₀ phase (PDF card No. 29-1463) regarding to peak position and relative intensity. No other diffraction peaks of any impurity phase were detected in the XRD patterns. In addition, there is no obvious peak position shift in the XRD patterns of SrLa₆W₁₀O₄₀ and SrLa_{5.85}W₁₀O₄₀: $0.15Eu^{3+}$ samples. These results indicated that the addition of Eu³⁺ ions did not change the

Figure 2. XRD patterns of $SrLa_6W_{10}O_{40}$ and $SrLa_{5.85}W_{10}O_{40}$: 0.15Eu³⁺ powders

Table 1. Unit cell parameters and unit cell volume (V) of $SrLa_{6x}W_{10}O_{40}$: xEu³⁺

Doping	a [Å]	<i>ل</i> ا لم	د [Å]	V [Å ³]
content, <i>x</i>	<i>a</i> [<i>I</i> i]	υ[n]		v [11]
0	12.2019	11.8814	11.9513	1732.56
0.03	12.0794	11.9081	12.0274	1730.06
0.06	12.1653	11.8875	11.9506	1728.15
0.09	12.1884	11.9083	11.8947	1726.43
0.15	12.1849	11.8802	11.9023	1722.88
0.18	12.2004	11.8975	11.8649	1722.16
0.21	12.1882	11.8957	11.8759	1721.81

crystal structure of $SrLa_6W_{10}O_{40}$, resulting in the formation of single phase material. The cell parameters and cell volume of the $SrLa_{6-x}W_{10}O_{40}$: xEu^{3+} (x = 0, 0.03, 0.06, 0.09, 0.12, 0.15, 0.18, 0.21) samples are given in Table 1. In the investigated compositional range, cell volume of the sample decreases slowly with the increase of Eu^{3+} doping amount. This indicates that Eu^{3+} ions are incorporated into the $SrLa_6W_{10}O_{40}$ lattice. The reasons why the $SrLa_6W_{10}O_{40}$ crystal structure is not changed with addition of Eu^{3+} ions are the valence state of Eu^{3+} and La³⁺ ions and similar radius of Eu³⁺ and La²⁺ ions for the same coordination number [28] (when the coordination number CN = 8, the radii of Eu³⁺ and La³⁺ ions are 0.107 nm [29] and 0.116 nm [28], respectively). However, it can be concluded that the Eu³⁺ doping affects the crystallization of SrLa₆W₁₀O₄₀, since at higher Eu³⁺ ion doping the diffraction peak intensity and the half-peak width of each diffraction peak gradually increases.

In order to further investigate the influence of Eu³⁺ ion doping on the crystal structure of SrLa₆W₁₀O₄₀, the undoped $\tilde{SrLa}_6 W_{10} \dot{O}_{40}$ sample and the $SrLa_{5.85} W_{10} O_{40}$: 0.15Eu^{3+} with the best luminescence performance were mixed according to mass ratio 1:1 and analysed by XRD (Fig. 3). It can be seen from Fig. 3a that the diffraction peak corresponding to each crystal plane of the powder mixture has a relatively obvious fork peak, showing a small peak next to the main peak. In order to make this fork peak more obvious, the diffraction peak corresponding to the (400) crystal plane ($2\theta = 29.970^\circ$) in the mixed powder is magnified (Fig. 3b). This confirmed that the XRD peak corresponding to the crystal plane (400) is fork peak (Fig. 3b), and the positions of two peaks are $2\theta = 30.037^{\circ}$ and 30.122° , respectively. This is a manifestation of the influence of doping ions entering the lattice on the matrix lattice. It is worth noting that the relative strength of the fork peak at higher angle $2\theta = 30.122^{\circ}$ is weaker than that at lower angle 2θ = 30.037° . It corresponds to the gradual weakening of the relative intensity of the XRD peaks with the increase of Eu^{3+} ion doping (under the same preparation and test conditions). These phenomena confirm that Eu^{3+} ions have doped into the matrix lattice.

3.2. Morphology analysis

Figure 4 shows SEM micrographs of the $SrLa_{5.85}W_{10}O_{40}$: 0.15Eu³⁺ phosphor sample heated at 1150 °C for 2 h. It can be seen from Fig. 4 that the sample consists of agglomerated particles which are partially sintered during the heat treatment process. The particles do not show obvious consistent shape (some

Figure 3. XRD pattern of SrLa₆W₁₀O₄₀ and SrLa_{5.85}W₁₀O₄₀: 0.15Eu³⁺ mixed powder (a) and enlarged XRD pattern (b)

TM3000 0412

Figure 5. Particle size distribution of SrLa_{5.85}W₁₀O₄₀: 0.15Eu³⁺ phosphor

particles are spherical) and the particle size ranged from one to dozens of µm with the average particle size of about 13 µm. The grain edges and surfaces are clear, indicating that the sample has good crystallization and good grain development, which corresponds to the XRD results showing high diffraction peak intensity and narrow half-peak width.

Figure 5 shows the laser particle size test results of $SrLa_{5,85}W_{10}O_{40}$: 0.15Eu^{3+*} phosphor. The D_{50} of the SrLa_{6-x} $W_{10}O_{40}$: xEu³⁺ phosphor sample is 12.8 µm (Fig. 5), which is similar to the average particle size obtained by SEM. The particle size distribution, evaluated by $(D_{75} - D_{25})/(D_{25} + D_{75})$, where $D_{25} = 6.74 \,\mu\text{m}$ and $D_{75} = 21.4 \,\mu\text{m}$, is relatively narrow since the corresponding ratio is 0.52.

3.3. Optical properties

Excitation spectra

Figure 6 shows the excitation spectrum (measured with light having wavelength of $\lambda_{em} = 610 \text{ nm}$) of the SrLa_{5.85}W₁₀O₄₀: 0.15Eu³⁺ phosphor sample, showing an absorption band in the range of 210-280 nm with maximum at 261 nm. This absorption band contains the following three components - ligand-to-metal charge-

Figure 6. Excitation spectrum of SrLa_{5.85}W₁₀O₄₀: 0.15Eu³⁺ phosphor

transfer (LMCT) formed by electron transfer from: (1) O^{2-} to Eu³⁺, (2) O^{2-} to W⁶⁺ and (3) from tungstate to Eu^{3+} [30]. This also indicates that Eu^{3+} ions have been doped into the SrLa₆W₁₀O₄₀ matrix lattice.

The excitation spectra also have 5 peaks at around 362, 376, 381, 394, 414 and 463 nm. The peak at 350 nm belongs to the f-f (i.e., the intrinsic excitation peak of Eu^{3+} ion) excitation peak of Eu^{3+} . The two strong peaks are located at 394 and 463 nm, corresponding to the ${}^{7}F_{0} \rightarrow {}^{5}L_{6}$ and ${}^{7}F_{0} \rightarrow {}^{5}D_{2}$ transitions of Eu³⁺, respectively. The excitation peak at 394 nm is strong and matches well with the emission wavelength of the nearultraviolet region, indicating that the sample is an ideal phosphor for near ultraviolet LED. The excitation peak at 463 nm matches the emission wavelength of the blue region, indicating that the sample is also an ideal phosphor for the blue light LED. In addition, the excitation peak at 362 nm is attributed to the ${}^7F_0 \rightarrow {}^5D_4$ [31] level transition of Eu^{3+} ion, and the excitation peaks at 376 and 381 nm are formed by the ${}^7F_0 \rightarrow {}^5L_7$ level transition of Eu^{3+} ion [32,33]. The excitation peak at 414 nm is caused by the ${}^7F_0 \rightarrow {}^5D_3$ transition of Eu³⁺ ion [34]. In SrLa₆ $W_{10}O_{40}$ matrix, the splitting of Eu₃⁺ by ${}^7F_0 \rightarrow {}^5L_7$ level transition indicates that Eu³⁺ is in a distorted state in the matrix [35].

Emission spectra

Emission spectra of the SrLa_{5.85} $W_{10}O_{40}$: 0.15Eu³⁺ sample (excitation wavelengths were $\lambda_{ex} = 254$, 395 and 465 nm) are shown in Fig. 7. The emission spectra are basically consistent in terms of the peak position and shape of the emission peak, and the difference lies in the relative intensity of the peak. The relative intensity of the excitation peak at 254 nm is much lower than that of the peaks at 395 and 465 nm (which have similar relative intensities).

Figure 7. Emission spectra of SrLa_{5.85}W₁₀O₄₀: 0.15Eu³⁺ phosphor

The excitation peaks at 591 and 611 nm are attributed to the ${}^{5}D_{0} \rightarrow {}^{7}F_{1}$ and ${}^{5}D_{0} \rightarrow {}^{7}F_{2}$ level transitions of Eu^{3+} ion, respectively. In the $SrLa_6W_{10}O_{40}$ matrix, the ${}^{5}D_{0} \rightarrow {}^{7}F_{2}$ level transition belonging to the electric dipole transition is stronger than the ${}^5D_0 \rightarrow {}^7F_1$ level transition belonging to the magnetic dipole transition. The electric dipole transition is caused by Eu^{3+} occupying the non-central symmetric sites in the matrix lattice and breaking the parity selection rule [36]. The strength of the transition depends on the symmetry of the lattice environment. The stronger the symmetry of the lattice environment, the weaker the strength is. The orange light emission peak at 591 nm is attributed to the ${}^{5}D_{0} \rightarrow {}^{7}F_{1}$ magnetic dipole transition of Eu³⁺, which is insensitive to the symmetry of the lattice environment [32]. The change of intensity ratio of red light emission to orange light emission of different samples (red to orange ratio) will quantitatively reflect the change of central symmetry of the lattice environment around Eu³⁺ ion. The higher the ratio, the lower the symmetry is. The emission intensity of red light at 611 nm is higher than that of orange light at 595 nm for the $SrLa_{5,85}W_{10}O_{40}$: 0.15Eu^{3+} phosphor, indicating that Eu^{3+} occupies the non-centrosymmetric site of the matrix lattice. High intensity ${}^{5}D_{0} \rightarrow {}^{7}F_{2}$ red emission [37] is conducive to obtaining higher red colour purity. To sum up, the energy level transition diagram at $\lambda_{ex} = 254$ nm (this wavelength is chosen to draw the charge migration band) is shown in Fig. 8.

To further prove that the spectra above are indeed formed by doping Eu^{3+} ions into the $SrLa_6W_{10}O_{40}$ lat-

Figure 8. Energy level diagram of $SrLa_{5.85}W_{10}O_{40}$: 0.15Eu³⁺ phosphor exited at $\lambda_{ex} = 254$ nm

tice, spectra of the sample with x = 0.15 without heat treatment were tested. Whether the excitation spectra are measured at $\lambda_{em} = 610$ nm or the emission spectra are measured at $\lambda_{ex} = 254$, 395 and 465 nm, there is no obvious excitation peak or emission peak. This further proves, to a certain extent, that Eu³⁺ ions have been doped into the SrLa₆W₁₀O₄₀ matrix lattice after heat treatment.

In general, rare earth ions form luminous centres in luminous materials, and the luminous intensity of materials is closely related to the doping amount of activated ions, namely the number of luminous centres [38]. Thus, the emission spectra of all investigated samples (SrLa_{6-x}W₁₀O₄₀: xEu^{3+} where x = 0, 0.03, 0.06, 0.060.09, 0.12, 0.15, 0.18 and 0.21) were measured for excitation wavelength of $\lambda_{ex} = 395 \text{ nm}$ (Fig. 9). It can be seen from Fig. 9 that under the excitation of 395 nm wavelength, when the Eu³⁺ doping amount is $x \le 0.15$, the *f*-*f* emission intensity of Eu^{3+} in the emission spectrum gradually increases with the increase of the doping amount of rare earth ions. However, this trend changes when the doping amount x of Eu^{3+} is higher than 0.15, and the emission peak intensity decreases with the increase of doping amount. Therefore, Eu³⁺ doping amount x = 0.15 has the strongest fluorescence emission. For $x \le 0.15$, the number of Eu³⁺ luminescent centres increases gradually with the increase of the doping amount of Eu³⁺, and the distance between the luminescent Eu³⁺ centres becomes shorter, thus improving the luminescence intensity. However, when the doping amount of Eu³⁺ exceeds a certain value, non-radiative energy transfer between activator ions will occur, resulting in concentration quenching effect, which reduces the luminous intensity and luminous efficiency. Thus, when the doping amount of Eu^{3+} exceeds x = 0.15, the distance between Eu³⁺ becomes even closer, which makes the non-radiative energy transfer to dominate. There-

Figure 9. Emission spectra of phosphors with different Eu³⁺-doping contents *x* (a) and intensities of the emission peak at 611 nm for different Eu³⁺-doping contents (b)

fore, the fluorescence intensity decreases with the increase of the concentration of Eu^{3+} and the optimal doping amount in the SrLa_{6-x}W₁₀O₄₀: xEu^{3+} phosphor is x = 0.15.

The critical concentration of Eu^{3+} in $\text{SrLa}_6 W_{10} O_{40}$ cell (χ_C) was calculated by the formula of critical distance $R_{\text{Eu-Eu}}$:

$$R_{\rm Eu-Eu} = 2 \left(\frac{3V}{4\pi \cdot \chi_C \cdot N} \right)^{1/3} \tag{1}$$

where V is the volume of the original cell and N is the number of matrix cations in the original cell. Since the cell volume of the $SrLa_{5.85}w_{10}O_{40}$: 0.15Eu³⁺ phosphor is 1.72288 nm³ (Table 1) and the critical distance of Eu³⁺ in the $Srla_6W_{10}O_{40}$ cell is about 2.22 nm, critical quenching concentration was calculated to be 0.025.

Colour coordinate

Table 2 lists the colour coordinate values of samples with different doping amounts of Eu^{3+} ions. Difference of colour coordinate values for the samples with different Eu^{3+} ion doping contents is small, indicating that the sample has good chrominance stability [39]. The colour coordinates of the SrLa_{5.85}W₁₀O₄₀: 0.15Eu³⁺ phosphor are (0.652, 0.348) which is closer to the standard colour coordinate of red (0.67, 0.33) than that of Y₂O₂S: Eu³⁺ (0.622, 0.351) [40,41]. This indi-

Table 2. Chromaticity coordinate values of SrLa_{6-x}W₁₀O₄₀: xEu³⁺ phosphors

Sample	x	у
SrLa _{5.97} W ₁₀ O ₄₀ : 0.03Eu ³⁺	0.651	0.349
SrLa _{5.95} W ₁₀ O ₄₀ : 0.06Eu ³⁺	0.651	0.348
SrLa _{5.91} W ₁₀ O ₄₀ : 0.09Eu ³⁺	0.652	0.348
SrLa _{5.88} W ₁₀ O ₄₀ : 0.12Eu ³⁺	0.652	0.348
SrLa _{5.85} W ₁₀ O ₄₀ : 0.15Eu ³⁺	0.652	0.348
SrLa _{5.82} W ₁₀ O ₄₀ : 0.18Eu ³⁺	0.652	0.348
SrLa _{5.79} W ₁₀ O ₄₀ : 0.21Eu ³⁺	0.650	0.349

cates that $SrLa_{5.85}W_{10}O_{40}$: 0.15Eu³⁺ phosphor has very high colour purity. Therefore, the phosphor of tungstate system can be used as the red phosphor in white LED system with three primary colours in near ultraviolet chip. It can also be used as a complementary phosphor to make up for the deficiency of red light components in the commercialized InGaN blue chip plus YAG: Ce yellow phosphor white LED system and improve its colour rendering.

IV. Conclusions

Novel tungstate $SrLa_{6-x}W_{10}O_{40}$: xEu^{3+} (x = 0, 0.03, 0.06, 0.09, 0.12, 0.15, 0.18, 0.21) red phosphor powders were prepared by solid state method at 1150 °C for 2 h by using $SrCO_3$, La_2O_3 , WO_3 and Eu_2O_3 as raw materials. The powders were agglomerated with particles having mostly spheroidal morphology, mean particle size $D_{50} = 12.8 \,\mu\text{m}$ and narrow particle size distribution. XRD analyses confirmed that Eu^{3+} ions were incorporated in the tungstate lattice and there were no diffraction peaks of any impurity phase. With the increase of Eu^{3+} doping amount there was no significant difference in the diffraction peak position of the phosphor, but the cell volume of $SrLa_6W_{10}O_{40}$ slowly decreased.

The spectral analyses confirmed that the optimal doping amount in the SrLa_{6-x}W₁₀O₄₀: xEu^{3+} phosphor is x = 0.15. The excitation spectrum of SrLa_{5.85}W₁₀O₄₀: $0.15Eu^{3+}$ phosphor has an absorption band in the range of 210–340 nm with maximum at 280 nm. The main peak of its emission spectrum is 611 nm, which is the red emission generated by the ${}^5D_0 \rightarrow {}^7F_2$ level transition of Eu³⁺. Therefore, the obtained tungstate can be used as the red phosphor of white LED system with three primary colours in near ultraviolet chip. The SrLa_{5.85}W₁₀O₄₀: $0.15Eu^{3+}$ powder has excellent luminous intensity and luminous efficiency. The quenching concentration is 0.025 and the critical distance of Eu³⁺ in SrLa₆W₁₀O₄₀ matrix is 2.22 nm.

Acknowledgements: This work was supported by

the National Natural Science Foundation of China [grant numbers 52072162, 51962014]; Jiangxi Provincial Natural Science Foundation [grant 20202ACBL214008, 20192BBEL50022, numbers 2020ZDI03004, 20232ACB204012]; the Jingdezhen Science and Technology plan project (2021ZDGG001, 20202GYZD013-09, 20202GYZD013-14); the Science Foundation of Jiangxi Provincial Department of Education (GJJ201318, GJJ201324, GJJ201345).

References

- G. Blasse, "Classical phosphors: A Pandora's box", J. Lumin., 72 [74] (1997) 129–134.
- G. Blasse, G.J. Dirksen, "On the luminescence of rareearth activated bismuth tungstates", *J. Solid. State. Chem.*, 42 [2] (1982) 163–169.
- L.Y. He, X.Q. Li, "Synthesis and luminescence properties of Sr₂ZnSi₂O₇:Eu³⁺ at low temperature", *Chin. J. Lumin.*, **35** [11] (2014) 1306–1310.
- G. Blasse, G.J. Dirksen, "Luminescence and energy transfer in bismuth tungstate Bi₂W₂O₉", *Phys. Status. Solidi A*, 57 [1] (1980) 229–233.
- 5. N. Watch, "Resources: the LED grows up", *Science*, **296** [5568] (2002) 623.
- J.L. Bu, Z.Y. Jiang, S.H. Jiao, "Irradiation damage of electron-beam on high-power AlInGaP red LED", *Adv. Mater.*, 415 [417] (2012) 1297–1301.
- 7. E.F. Schubert, *Light-Emitting Diodes*, New York, Rensselaer Polytechnic Institute Press, 2006.
- M.G. Craford, "LEDs challenge the incandescent", *IEEE Circuits Devices Magaz.*, 8 [5] (1992) 24–29.
- R.V. Steele, "High-brightness LED market overview", Proceed. SPIE, 4445 [12] (2001) 1–4.
- C.F. Guo, D.X. Huang, Q. Su, "Methods to improve the fluorescence intensity of CaS: Eu²⁺ red-emitting phosphor for white LED", *Mater. Sci. Eng. B*, **130** (2006) 189–193.
- X.H. He, J. Zhou, N. Lian, M.Y. Guan, "Dependence of photoluminescence performance on composition of novel red-emitting phosphors for white LEDs application", *Bull. Chinese Ceram. Soc.*, 28 [4] (2009) 741–750.
- M.R. Krames, O.B. Shchekin, R. Mueller-Mach, G.O. Mueller, L. Zhou, G. Harbers, M. George Craford, "Status and future of high-power light-emitting diodes for solidstate lighting", *J. Disp. Technol.*, **3** [2] (2007) 160–175.
- Q.Q. Hou, P.X. Zhang, M.F. Zhang, Z.W. Lu, X.Z. Ren, "Development of the research on high-power WLEDs", *Adv. Mater. Res.*, 158 [3] (2010) 42–51.
- V.D. Luong, W. Zhang, H.-R. Lee, "Synthesis of Sr₂Si₅N₈: Eu²⁺ phosphor for enhanced red emission", *Adv. Mater. Res.*, 235 [2705] (2011) 2705–2709.
- G. Feng., W.H. Jiang, Y.B. Chen, R. Zeng, "A novel red phosphor NaLa₄(SiO₄)₃F: Eu³⁺", *Mater. Lett.*, **65** [1] (2011) 110–112.
- Y.S. Hua, W.D. Zhuang, H.Q. Ye, D. Wang, S. Zhang, X. Huang, "A novel red phosphor for white light emitting diodes", *J. Alloys Compd.*, **390** [1-2] (2005) 226–229.
- L.Y. Zhou, J.X. Shi, M.L. Gong, "Red phosphor SrY₂O₄: Eu³⁺ synthesized by the sol-gel method", *J. Lumin.*, **113** [3-4] (2005) 285–290.
- S.S. Yao, Y.Y. Li, L.H. Hue, Y.W. Yan, "Luminescent properties of Ba₂ZnSi₂O₇: Eu³⁺ phosphors prepared by sol-gel process", *Eur. Phys. J. Appl. Phys.*, 48 (2009)

20602.

- M. Yu, J. Lin, J. Fang, "Silica spheres coated with YVO₄: Eu³⁺ layers via sol-gel process: A simple method to obtain spherical core-shell phosphors", *Chem. Mater.*, **17** [7] (2005) 1783–1791.
- Y. Kawahara, V. Petrykin, T. Ichihara, N. Kijima, "Synthesis of high-brightness sub-micrometer Y₂O₂S red phosphor powders by complex homogeneous precipitation method", *Chem. Mater.*, 18 [26] (2006) 6303–6307.
- K.N. Kim, H.K. Jung, H.D. Park, D. Kim, "Synthesis and characterization of red phosphor (Y,Gd)BO₃: Eu by the coprecipitation method", *J. Mater. Res.*, **17** [4] (2002) 907– 910.
- L.S. Wang, Y.H. Zhou, Z.W. Quan, J. Lin, "Formation mechanisms and morphology dependent luminescence properties of Y₂O₃: Eu phosphors prepared by spray pyrolysis process", *Mater. Lett.*, **59** [10] (2005) 1130–1133.
- Y.C. Kang, S.B. Park, W. Lenggoro,, "Preparation of nonaggregated Y₂O₃: Eu phosphor particles by spray pyrolysis method", *J. Mater. Res.*, 14 [6] (1999) 2611–2615.
- K.H. Kim, J.K. Park, C.H. Kim, H.D. Park, "Synthesis of SrTiO₃: Pr, Al by ultrasonic spray pyrolysis", *Ceram. Int.*, 28 [1] (2002) 29–36.
- D.S. Kim, R.Y. Lee, "Synthesis and photoluminescence properties of (Y,Gd)BO₃: Eu phosphor prepared by ultrasonic spray", *J. Mater. Sci.*, **35** [19] (2000) 4777–4782.
- J. Yang, Z.W. Quan, D.Y. Kong, X.M. Liu, "Y₂O₃: Eu³⁺ microspheres: Solvothermal synthesis and luminescence properties", *Cryst. Growth. Des.*, 7 [4] (2007) 730–735.
- G. Jia, Y.H. Song, M. Yang, Y. Huang, L. Zhang, H. You, "Uniform YVO₄: Ln³⁺ (Ln = Eu, Dy, and Sm) nanocrystals: Solvothermal synthesis and luminescence properties", *Opt. Mater.*, **31** [6] (2009) 1032–1037.
- F.B. Cao, "Sol-gel synthesis of red-emitting phosphor Ca-Sr-Mo-W-O-(Eu³⁺,La³⁺) powders and luminescence properties", *Ind. Eng. Chem. Res.*, **51** [9] (2012) 3569–3574.
- S.X. Yan, J.H. Zhang, X. Zhang, S. Lu, "Enhanced red emission in CaMoO₄: Bi³⁺,Eu³⁺", *J. Phys. Chem. C*, **111** [35] (2007) 13256–13260.
- Q.L. Dai, Luminescence Properties of Rare Earth Activated Tungstate and Sulfur Oxide Nanocrystals, Changchun Inst. Optics, Fine Mech. Phys., Chinese Academy of Sciences, Changchun, 2009.
- F.Q. Ren, D.H. Chen, "A novel red-emitting phosphor for white light-emitting diodes", J. Alloys Compd., 499 [1] (2010) 53–56.
- S.Y. Hyoung, S.J. Ho, B.I. Won, H.K. Jong, "Particle size control of a monodisperse spherical Y₂O₃: Eu³⁺ phosphor and its photoluminescence properties", *J. Mater. Res.*, 22 [1] (2007) 2017–2024.
- F.A. Rabuffetti, J.S. Lee, R.L. Brutchey, "Vapor diffusion sol-gel synthesis of fluorescent perovskite oxide nanocrystals", *Adv. Mater.*, 24 [4] (2012) 1434–1438.
- J.L. Huang, L.Y. Zhou, Q. Pang, F. Gong, "Photoluminescence properties of a novel phosphor CaB₂O₄: Eu³⁺ under NUV excitation", *Luminescence*, 24 [6] (2009) 363–366.
- Q.S. Lu, Z.Y. Wang, P.Y. Wang, J. Li, "Structure and luminescence properties of Eu³⁺-doped cubic mesoporous silica thin films", *Nanoscale Res. Lett.*, **5** [11] (2010) 761–768.
- Z.L. Wang, H.B. Liang, M.L. Gong, Q. Su, "Novel red phosphor of Bi³⁺, Sm³⁺ co-activated NaEu(MoO₄)₂", *Opt. Mater.*, **29** [7] (2007) 896–900.

- 37. Y. Zhai, S. Feng, Z. Zhang, L.J. Shi, X.H. Hao,, "Synthesis and properties of a new red phosphor SrMgSi₂O₆: Eu³⁺, M (M = Gd³⁺, Ti⁴⁺) for white LED and its properties", *Rare Metal. Mater. Eng.*, **39** [10] (2010) 1825–1828.
- Z.P. Yang, Y.C. Song, Y. Han, Q. Zhao, F. Pan, D.Z. Zhou, "Preparation and luminescence properties of novel red phosphor Sr₂ZnMoO₆: Sm³⁺ phosphor", *Chin. J. Lumin.*, **33** [6] (2012) 586–590.
- 39. J. Sun, J. Lai, H. Du, "Synthesis and luminescence pro-

perties of red emitting phosphors Na₃CaB₅O₁₀: Eu³⁺", *Adv. Mater. Res.*, **295-297** [543] (2011) 547–550.

- A. Gangadharan, M. Pokhrel, M. Alejandrina Martínez Gámez, D.K. Sada, "Synthesis and upconversion spectroscopy of Yb, Er doped M₂O₂S (M = La, Gd, Y) phosphors", *Sci. Adv. Mater.*, 4 [5-6] (2012) 623–630.
- Y.C. Chang, Y.S. Chang, "Synthesis and photoluminescence characteristics of color-tunable BaY₂ZnO₅: Eu³⁺ phosphors", *Appl. Phys. Lett.*, **93** [21] (2008) 2–3.